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ABSTRACT

We consider the three-dimensional motion of a viscoelastic liquid

occupying all space. The constitutive law is assumed to be of the form

suggested by Kaye [13J and Bernstein, Kearaley and Zapas [2]. An existence

and uniqueness result for solutions of the initial value problem on

sufficiently short time intervals is proved using Kato's theory of quasi-

linear hyperbolic equations.
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SIGNIFICANCE AND EXPLANATION

The existence theory for models of viscoelastic fluids has so far not

been very well developed, in particular in three dimensional situations.

Here, iw prov*Aan existence theorem for a particular class of models,

suggested by Kaye and Bernstein, Kearsley and Zapas. This theory is based on

a postulated analogy with hyperelasticity. It is assumed that the fluid

occupies all of space. Abstract methods developed originally for quasilinear

hyperbolic systems can be used to prove the well-posedness of the initial

value problem.
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A LOCAL EXISTENCE AND UNIQUENESS THEOR14
FOR A K-BICZ-FLUID

Michael Penardy

1. Introduction

The purpose of this paper is to show the well-posdness of the initial history value

problem for a class of viscoelastic materials with memory. The constitutive law is assume

to be of the form proposed by Kaye [13] and Bernstein, Kearsley and zapas (2]. Their

theory is motivated by a formal analogy with classical hyperelasticity [21]. The

equilibrium configuration Is replaced by a configuration previously occupied by the

material. It is assumed that the stress contributions from all the previous configurations

superpose in an additive fashion, leading mathematically to a convolution integral.

We consider a material occupying all of R3, which is assumed incompressible. by

- (1,€2,C
3
) we denote body coordinates, while (j,t) = (y y 2y 3) denotes the

position of material points In space. The equation of motion is given by

I ( rs) + g (j,t)
a r

(1.1)

det ( - 1

avi

Here = denotes the convected stress tensor, and the g are the components of the body

force (we could allow g to depend on z, but omit this for simplicity). The Zinstein

convention Is used throughout this paper.

We also need the following notations:

aci J ' jk k

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant No. MCS-7927062,
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The K-91Z constitutive model is described In terms of a function W, which Is the analogue

of the strain energy in classical hyperelasticity. W is a real-valued function of the two

arguments 11 and 12- The constitutive law of K-9KZ is

rs rs tw rsW -PY + ft alt-T) Y " MrsT

(1.2)
3W r
- 2 Yr (t)Y ( T ) ¥ q t ] d T

2 p

Here p denotes the undetermined pressure. The kernel a is positive and monotone

decreasing. We also assume that W and a are smooth functions and that a decays

sufficiently fast (e.g., exponentially) at infinity. In particular, we do not admit that

a is singular at 0. Such singularities, however, are physically possible and are in fact

predicted by some molecular theories, e.g. (5]. Thus the requirement that a Is smooth

must be regarded as a restriction on the material.

The K-BKZ theory includes various models suggested in the literature - some of them

based on molecular theories - as special cases [31, [5), (7], (15-17], (22], (23]. A

crucial hypothesis needed for well-posedness of the initial value problem is that the

equation of motion is "hyperbolic", or, equivalently, that the corresponding quasi-static

equation is "elliptic". This requirement leads to an inequality involving first and second

derivatives of W. In chapter 2, we give a sufficient condition for ellipticity. We show

that ellipticity holds if W is monotone in each argument and is a convex function of

(11 and /2 . These conditions imply in particular that, in simple shear flow, N I is

positive, N2  is negative and IN1 I, IN 2. These consequences are cons!itent with

experimental results on polymer melts and solutions.

Our well-posedness theorem is based on Kato's theory of quasilinear hyperbolic systems

[8), [10-12]. The case of classical hyperelasticity is considered in 181, and, to some

extent, our arguments will be analogous. However, the history dependence and

-2-

-



incompressibility conditions introduce complicating features. As a result, Kato's

assumptions cannot be verified imediately, using the equations as they stand, but only

after going through some transformations and substitution*.

We shall not consider (1.1) itself, but its second time-derivative. B tLon (1.1)

and its first time derivative ore then used to express y and i In terms of z and

" This elimination is discussed In chapter 3. Because of ellipticity, there is a gain

of regularity associated with it. Roughly speaking, this serves to Improve the smoothness

of the "coefficients" in a quasilinear formulation of the problem.

In chapter 4, we finally pose the evolution problem in a form accessible to Kato's

method. The delay equation is reformulated as an abstract evolution problem on a history

space. In contrast with some previous approaches to similar problems, however, this

history space only involves the history back to the Initial time t - 0 rather than all

the way back to t - -m. Zn the previous literature, existence theorems for "hyperbolic"

models of viscoelastic fluids mostly concern linearized [91, [201 or nonlinear, but one-

dimensional problems (41, (181. The present problem has been studied by Kim [14 In the

special case W - 12. Kim's method Is based on artificial viscosity and differs

substantially from the approach used here.

-3-. I
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2. A mufIcient condition for ellipticity ± -- Lt .t - 1T .
por abbreviation, let £ be defined by P I S and lot 9(t.T) - m ' t) )

31 (t)

. Then 11 .- tr(VT and 12 trg-'lgK), so that w is a function of F. The

right hand side of (1.1) can be rewrittet as followe

_ (L ,rs) 3v ft • at_,,)
Om a Cr acm 8 ai 2

(2.1) V [ 1cq;€ C() yt() + €q

p r

DC ay r t) y1 (r)

tet 'A - P(T) denote the entries of g-1 The right hand side of (2.1) remains
ay 3I(t)

unchanged if in replaced by X;W + . The additional term vanishes as aariarj a iai + I
p r p r

result of the incompressibility condition. In the subsequent chapter@, we shall iume

that the following strong ellipticity condition in matinfied:

(3). If X > 0 is chosen large enough, then

ai 4 a i j )X .Pr *'CA ul2
p r

In terms of the original arguments of W, 1, and 12, this condition hem a rather

indirect form. Rowever, we have the following sufficient criterion, which is easily

expressed in terms of 11 and 12.

Elern 2.1:

If V is monotone in each argument, strictly monotone in 11 or 120 and a convex

function of ti and h 2 , then (3) holds.

Proof:

We have

-4-



2W - 2 !W , pr

p r

+ r )
ja

+ 4 2 P F~j4
2! p r

p1 j12apa r a a

2 i

2

Moreaoer, 3W 2V 2

a iI

2 
2231 -+ ze

Using this, we obtain

3Fw 30 1V ij1p/2r

pr 1 1

3/I~ 1i 0 a ~.jaaavl2 2

+ -P F F)
10ja

3/2 j v
2

I (ow 1)2 p r



(p I~ F rj i 0p 0

Fl12 1 2

I2 -) 2(F F F F)

2

The first term leads to aW - (IAIMI2  1(V. A) > 0.

a positive contribution, if W is convex. ?o estimate the second term, let us put

=vO )Y, P
p 
ap'. We find

2 "2

+1P P pr P 1 l P prp~m )
p r 12 pr+ w*1((.)Ao~ + I I2 a~rap ~ - 1 (?~atJ )2

__ 1.
2w 2(

a~~~l 2 I

The term K Fj gives a a contribution K(..a") Since 1 2 tr a, we have

2 - - 1 )
2  

0, and the whole term can be made positive by chosing K

large enough. This proves the lemma.

--6-
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3. solution of a nonliner elliptic Volterra e-aation

Throughout the remainder of the paper, it Is assumed that (W) holds vith a suitable
2

constant I e R. For abbreviation, we wrt Apr V 3 Apr dpnso

pr
the gradients of y(t) end y(T), and it is symoetric in (i,p) and (J,r). squation

(1.1) Is rewritten in the following equivalent form

hi := O3 i - X(yi - CL) - gi I

; t pr
ace By2y i 3C

(3.1)

cav 3C .L.i -] (yi i

3 q ;yr(,) (yp(,)

0 o t j I

It is convenient to split the history occurring in the integral into a known and an unknown

part. Let the initial time be t - 0. Then Z(T), T I 0 is considered known, and we

shall denote it by yo(T). On the interval [0,t], we perform a reesaling:

x(o) - (ot), so that a ranges from 0 to 1. 2quation (3.1) can be rewritten as an

equation for Z as follows:

hi(a 0=- g() 'CS- + " f0 a(Ct-T)
ac a (a)-

Apr, 3r 3yi~)
A Ij (y(O)y M) (  

a q ) ) -) 
yp(.

(3.2) + t1 0 ,,ot .t)AP(;(o).;,.)) " a

.0) 3C ar ) (;I(a) -

ac q 3;r0 )3p(G.)

-7-



The term involving the unknown part of the history (from 0 to t) is no multiplied by a

factor of t. Hence it can be treated as a perturbation for t small enough. If we set

t - 0, then the right hand side of (3.2) acts pointwise with respect to a and, for each

a e (0,1), we have a nonlinear elliptic system for 1(e) and p(a).

We assume that we have a solution 1(o) X(
0
), p(O) p(O) for t - 0 given by the

Initial conditions of the problem. If the linearization of the right hand side of (3.2) at

this given s.lution is invertible, then the Implicit function theorem can be used to show

the existence of solutions to (3.2) for small t.

More precisely, let n be any integer w 1. we assume that the initial history is

such that x.,(T) - is continuous and bounded from (-i,0] into an+2(3 
) 

and that it

satisfies the incompressibility condition. Let the Initial values h(0) e Hn, (O) e +

n+2 n
H and Vp(O) H satisfy (3.1) for t = 0. Then the constant functions h(a) E h(O)

etc. satisfy (3.2) for t - 0. Condition (5) guarantees that the linearization of the

right hand side of (3.2) (for t - 0) is an elliptic system in the sense of Agmon, Douglis

and Nirenberg [1], [61, moreover, it is Invertible if X > 0 Is chosen large enough. The

existence of a weak solution is established by variational methods using G4rding's

Inequality. Regularity can then be obtained using the standard trick of estimating

difference quotients. According to the implicit function theorem, equation (3.2) can be
n+2 nsolved uniquely for .6 C( I+,1] + Hn+2 ), Vp e c(0,1] 0 ) as functions of

e C[0,1]; Hn), provided t is small enough. For technical reasons, we shall have to

use a different topology for the a-dependence in chapter 4, but a similar argument will

apply also with that topology.

By applying t! Aame procedure to the time differentiated version of (1.1), we can
S 0

resolve for I and p as functions of h, Z and p.

0
Remark: The reader should be careful to distinguish between . and X. we have

(Ca) - ilot), but () = d lot) - a 1 (at).

y d-8-
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4. The hyperbolic Cauchy problem

We use the abbreviations: u - , v " - ( - j), w " - - x.. q - p, * = p.

where A is as in the previous chapter. The second time derivative of equation (1.1) can

then be written as follows:

p ; ' + 'I f t
3C s a yl 1 €s

(4.1)

+ -0i {Zuo ,,v}

pw I a

J 3 yi - --1d

Here 0 is an expression Involving spatial derivatives of y and u up to the second

order, and spatial derivatives of v. p and q up to the first order. T depends on

first spatial derivatives of y, 1 and v. Thus the 0 - and Y - terms represent

perturbations of lower differential order than the other terms in the equation. Of course,

we think of y, I, p and q as being expressed in terms of v and w as described in

section 3.

In order to represent (4.1) as an evolution problem, we have to eliminate the variable

. As in Wavier-Stokes theory, this is done by using the Hodge projection. The difference

is that, since we work in Lagrangian coordinates, the Hodge projection is a function of the

n+ 1
displacement y. Let y e i + H (n ) 2) be such that its gradient satisfies the

incompressibility condition. We define an orthogonal projection P(Y) in L2 (3) to be

such that Its range consists of all vectorfields u e L which satisfy U 0,
aa

while its nullspace contains all vectorfields of the form where Vq e L2 .  In

other words, P(y) is the image of the Hodge projection under the coordinate transforma-

tion y .+. The projection P(y) Is continuous from HJ  into itself for j 4 n, and it

-9-



n+1

can be shown [19) that P(y) - as an operator in H! - depends smoothly on . e J + H

Obviously, # is eliminated from (4.1) by applying the projection P(Y). Moreover,

the incompressibility condition requires that

LC! - au a' 2 aU i
s i s k tI

ac i y 3 ay ac Iy

This can he used to express (I - P(y))v in terms of x and u. More precisely,

P()ven+2 n+2, n+3.
(1 - P())v e Hn  is a smooth function of u e H +  e Similarly, by

differentiatinq the last equation of (4.1) with respect to time, we can express
( Py), n _ n+

1

(I - P()); @ Hn as a smooth function of u, v, w e Hn, X e H . Thus we can insert or

omit terms involvinq (1 - P(y))V, (1 - P(y))w and compensate for this by other terms

involvinq only lower order derivatives.

We use this to write (4.1) in the following form

V=W

1'_ P F)A P(y)v + (1 P(.) )A

(4.2) 2

(1 - P(y))v + (y0 ,u,v,w,p.q)

-P(Y).*

Here A stands for

1 a v a q -)d
(A v)

I =  
f_ a(t-T)A. s - r=- 2 q a yr(T) ayp(T)

and A denotes the Laplace operator. The term (1 - P(y)) A(i - P(X))v will be

convenient later. Of course, another term compensating for it is contained in *.

We rewrite (4.2) as an evolution problem on a history space by introducing the "hat

variables" as in chapter 3: v(a) = v(t), w(a) = w(ot). The operator A is split into

two parts:
i 1 0pr

(A= t a(ot-T)Apr(Y(o),y0(T))

~ v ((Y) Ir -

ac q ayr(T) ayp(T)

0-10

-to-



(A (t'X,0)V(O) t fo a(at-ot)A pr (Y

a 3I ̂(0) ^ 3
acs q ,r(..) yo)

Equation (4.2) can now be written in the following form:
I -

v(o) = ow(a)

W(O) - a (P((a))(A A(43) o 0=1

( (1 P(W(o))W( - P( (O))V(o) +

It will turn out that (4.3) can be put into the context of an abstract result due to

Hughes. Kato and Marsden 18]. In the following, we quote their assumptions and their

result.

We are concerned with an evolution problem written in the form

(4.4) u -A(t,u)u + f(t,u), 0 4 t 4 T, u(O) =

where u lies in a Banach space. Since the operator A is in applications a differential

'perator, it does not take any Ranach space into itself, and we have to consider more than

one topology. We shall therefore be dealing with three Banach spaces: Y C XC Z, all

reflexive and separable with continuous and dense inclusions. (Hughes, Kato and Marsden

introduce a fourth space ', which for our application can be taken equal to X.)

On the space Z, a variable norm is considered. Let N(Z) be the set of all norms

in Z equivalent to the given one I I A metric on N(Z) is given by

d(I I ,I Iu) = tn max f sup IzI /Izl , sup IzI /Iz}
S0zez O+Zez v

We now state the assumptions of Hughes, Kato and Marsden. All assumptions are supposed to

hold for t,t',...e(O,T] for some T > 0 and w,w,...e w, where W is an open set in

Y. ,XN , N.... are arbitrary constants. The assumptions are:

(N) For (t,w) e 10,T] x W, there is N(t,w) e N(Z) such that

d(N(t,w), I I '

z N

d(Nft',w'), N(t,w)) uN (It-t'I + lw-w' X).

N-lX

- - . .... .... .... ... .. .. II .... II-I ll



[S) There is an isomorphism S(t,w) : Y * Z such that

(tw) An, Is-
1 
(t,w)iZ,Y C AIt'ly,z 5 S

IS(t',w') - S(t,w)lyz 4 u(It,-t + Iw'-W x

(AI) A(tw) e G(ZN(t,.), 1, 0). This means that -A(t,w) is a C0-generstor in Z

(equipped with the norm (tw)) such that
e-TA (t~w) . ST

(t,w)zI e OTIzN(t,w).

(A2) S(t,w)A(t,w)S -1(t,w) - A(tw) + B(t,w), where

B(tw) e B(Z), IB(tw)IZ z ( AB .

(A3) A(t,w) e B(Y,X) with IA(tW)y x A A

and UA(t,w') - A(t,w)Iy X  4 A *w-w'X-

The mapping t A(t,w) e B(Y,Z) is continuous in norm.

(A4) There is an element yo e w such that

A(tw)y0 e Y, IA(t,w)y0 1 ' A0 .

(fi) f(t,w) e Y, Of(tew)Iy < xff If(t,w') - f(tw)lX

i fIw'-wIX and the mapping t - f(t,w) e z is continuous.

Under these assumptions, the following theorem is proved.

Theorem 4.1:

Assume (N), (S), (Al) - (A4) and (fl hold. Then there is p* > 0 and 0 < T' 4 T

such that for # e Y with I-yol -C P', equation (4.4) has a unique solution u on

[0,T'] such that u e C([0,T'],W)t C l([O,T']IX). Here p' depends on A., A.-, X and

R := dist(y0 ,Y\W), V depends on all the constants occurring in the assumptions. When *

varies in Y subject to the restriction 1#-y 0 l p', the mapping * u(t) is Lipschits

continuous in the X-norm, uniformly for t e (0,T'].

We now show how this applied to (4.3). For this, we have to identify the space Y,

X and Z and the functions A, f, S and N.

The definition of the spaces requires that we specify a topology both for the spatial

dependence and for the 0-dependence. Poth have to be reflexive. We denote by W
0 'n  

the

space of all functions v(,) : 0 e (0,11 * Hn(3,.3), which are souare inteqrable over

(0,1) (in the Pochner sense). w denotes the space of all functions

-12-



[0,1) Hn 3.
3 

3), which have a square Integrable derivative (with respect to 0).

Moreover, we let V
n 

= (w'n+1 n Wo
'

+ 4
) x (W 

1
"t' A O,n+3 . Our choice of spaces is

Z - VI, X - Of Y - , where n > 4. The operator -A is identified with the

underlined terms on the right hand side of (4.3), while f consists of the remaining
A

terms. We take S to be equal to ( + X).), where A is such that this operator is

Invertible. (As in chapter 3, it follows from the theory of elliptic equations that such a

A exists.)

his last choice trivially satisfies (A2) with B - 0. Moreover, our choice of

topologies is such that all boundedness and Lipschitz conditions are satisfied, (under

appropriate smoothness assumptions on the kernel a, the strain energy W and the data of

the problem) i.e. the conditions (S), A3) and (fl). As In most applications, there is a

dense set of yo satisfying (A4) (any YO e V
n + 2  

does).

It thus remains to identify a norm N such that (Al) holds. For this, we write

0 1
-A 0( ) t

A 0

The operator A has a similar form as in 181, and the same argument as there shows that

(Al) holds in the space W
0
'
1 

x W
0 0

, if this space Is equipped with the norm

2
I(VW)2 " (V, (-A + A )v) (ww)2

Here A0 > 0 is chosen large enough that -A + X0 is invertible. We have to verify that

(Al) also holds in higher Sobolev spaces. As far as the space dependence is concerned.

this is easily achieved by using norms involving the operator S (see (10-12]). However,

the topology of Z also involves a 0-derivative. Note that

d 1v dw

A(v,w) - A(-=, + !a- (v~wda d

Since dh Is bounded from Z into W0 , 2 x W0 ' 1, we can satisfy (Wl) by choosing the same
do

norm for the a-derivatlve. The perturbation given by will not disturb the resolvent

estimate required for the CO-semiqroup property.

-13-
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